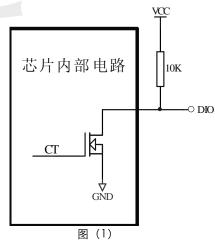

### 一、概述

TM1629是带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。主要应用于冰箱、空调、家庭影院等产品的高段位显示屏驱动。

### 二、 特性说明

- ➤ 采用功率CMOS 工艺
- ▶ 显示模式 16 段×8 位
- ▶ 键扫描 (8×4bit)
- ▶ 辉度调节电路(占空比8级可调)
- ▶ 串行接口 (CLK, STB, DIN, DOUT)
- ▶ 振荡方式: RC 振荡 (450KHz+5%)
- ▶ 内置上电复位电路
- ➤ 采用QFP44封装


#### 三、管脚定义:



# 四、管脚说明

| 符号                | 管脚名称   | 说明                                                                          |
|-------------------|--------|-----------------------------------------------------------------------------|
| DIN               | 数据输入   | 在时钟上升沿输入串行数据,从低位开始。可与<br>DOUT短接作DIO使用                                       |
| DOUT              | 数据输出   | 在时钟上升沿输出串行数据,从低位开始。可与<br>DIN短接作DIO使用                                        |
| STB               | 片选     | 在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB 为高时,CLK 被忽略 |
| CLK               | 时钟输入   | 在时钟上升沿输入/输出串行数据                                                             |
| K0~K3             | 键扫数据输入 | 输入该脚的数据在显示周期结束后被<br>锁存                                                      |
| SEG1/KS1~SEG8/KS8 | 输出(段)  | 段输出(也用作键扫描),p管开漏输出                                                          |
| SEG9~SEG16        | 输出(段)  | 段输出,P管开漏输出                                                                  |
| GRID1~GRID8       | 输出 (位) | 位输出,N管开漏输出                                                                  |
| VDD               | 逻辑电源   | 5V ± 10%                                                                    |
| VSS               | 逻辑地    | 接系统地                                                                        |
| NC                | 空脚     | 内部未连线                                                                       |

▲ **注意**: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推荐10K的上拉电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,你可以参考图(6),在时钟的上升沿读数才时稳定。



## 五、 显示寄存器地址和显示模式:

该寄存器存储通过串行接口从外部器件传送到TM1629 的数据,地址从00H-0FH共16字节单元,分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:

写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

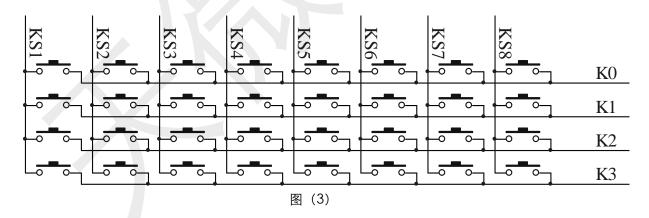

|       | SEG16 | SEG15 | SEG14 | SEG13 | SEG12 | SEG11 | SEG10  | SEG9 | SEG8 | SEG7 | SEG6   | SEG5 | SEG4 | SEG3 | SEG2   | SEG1 |
|-------|-------|-------|-------|-------|-------|-------|--------|------|------|------|--------|------|------|------|--------|------|
|       | )     | 高四位   | xHU ( | X     |       | 氐四位)  | xxHL(1 |      | )    | 高四位) | xxHU(i |      | )    | 氐四位) | kHL (ϯ | X    |
| 1     | В7    | В6    | B5    | B4    | В3    | В2    | В1     | ВО   | В7   | В6   | В5     | В4   | В3   | B2   | В1     | ВО   |
| GRID1 |       | HÜ    | 01    |       |       | HL    | 01     |      |      | HU   | 00     |      |      | HL   | 00     |      |
| GRID2 |       | HU    | 03    |       |       | HL    | 03     |      |      | HU   | 02     |      |      | :HL  | 02     |      |
| GRID3 |       | HU    | 05    |       |       | HL    | 05     |      |      | HU   | 04     |      |      | HL   | 04     |      |
| GRID4 |       | HU    | 07    |       |       | 'HL   | 07     |      |      | HU   | 06     |      |      | HL   | 06     |      |
| GRID5 |       | HU    | 09    |       |       | HL    | 09     |      |      | HU   | 08     |      |      | HL   | 08     |      |
| GRID6 |       | HU    | OB    |       |       | HL    | OB     |      |      | HU   | 0A     |      |      | ŀΗL  | 0A     |      |
| GRID7 |       | HU    | 00    |       |       | HL    | 00     | 4    |      | HU   | 0C     |      |      | HL   | 0C     |      |
| GRID8 |       | HU    | OF    |       |       | HL    | OF     |      |      | HU   | 0E     |      |      | HL   | 0E     |      |

图 (2)

写LED显示数据的时候,按照从低位地址到高位地址,从字节的低位到高位操作;在运用中没有使用到的SEG输出口,在对应的BIT地址位写0。

# 六、 键扫描和键扫数据寄存器:

键扫矩阵为8×4bit, 如图 (3) 所示:



键扫数据储存地址如图(4)所示,先发读键命令后,开始读取按键数据BYTE1—BYTE4字节,读数据从低位开始输出,芯片K和KS引脚对应的按键按下时,相对应的字节内的 BIT位为1。

| ВО | В1  | B2 | В3 | B4 | B5 | В6    | В7 |       |
|----|-----|----|----|----|----|-------|----|-------|
| К3 | K2  | K1 | K0 | К3 | K2 | K1    | K0 |       |
|    | KS1 |    |    |    | KS | BYTE1 |    |       |
|    | KS3 | 3  |    |    | KS | BYTE2 |    |       |
|    | KS5 | 5  |    |    | KS | BYTE3 |    |       |
|    | KS7 | 7  |    |    | KS | 88    |    | BYTE4 |

图 (4)

#### ▲注意: 1、TM1629最多可以读4个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE4读取,不可跨字节读。例如:硬件上的K2 与KS8对应按键按下时,此时想要读到此按键数据,必须需要读到第4个字节的第5BIT位,才可 读出数据:

当K1与KS8, K2与KS8, K3与KS8三个按键同时按下时,此时BYTE4所读数据的B4, B5, B6位均 为1。

3、组合键只能是同一个KS,不同的K引脚才能做组合键;同一个K与不同的KS引脚不 可以做成组合键使用。

# 七、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码, 取最高B7、B6两位比特 位以区别不同的指令。

| B7 | B6 | 指令       |  |  |  |  |  |
|----|----|----------|--|--|--|--|--|
| 0  | 1  | 数据命令设置   |  |  |  |  |  |
| 1  | 0  | 显示控制命令设置 |  |  |  |  |  |
| 1  | 1  | 地址命令设置   |  |  |  |  |  |

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数 据无效(之前传送的指令或数据保持有效)。

#### 7. 1 数据命令设置:

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB LSB

| В7 | В6 | В5  | B4  | В3 | B2 | В1 | во | 功能                                    | 说明        |
|----|----|-----|-----|----|----|----|----|---------------------------------------|-----------|
| 0  | 1  |     |     |    |    | 0  | 0  | ************************************* | 写数据到显示寄存器 |
| 0  | 1  |     |     |    |    | 1  | 0  | 数据读写模式设置                              | 读键扫数据     |
| 0  | 1  | 无关项 | 页,填 |    | 0  |    |    | ##################################### | 自动地址增加    |
| 0  | 1  | C   | )   |    | 1  |    |    | 地址增加模式设置                              | 固定地址      |
| 0  | 1  |     |     | 0  |    |    |    | 测试模式设置(内                              | 普通模式      |
| 0  | 1  |     |     | 1  |    |    |    | 部使用)                                  | 测试模式      |

# 7. 2 地址命令设设置:

MSB LSB

| В7 | В6 | B5 | B4 | В3 | B2 | В1 | во | 显示地址 |
|----|----|----|----|----|----|----|----|------|
| 1  | 1  |    |    | 0  | 0  | 0  | 0  | 00H  |
| 1  | 1  |    |    | 0  | 0  | 0  | 1  | 01H  |
| 1  | 1  |    |    | 0  | 0  | 1  | 0  | 02H  |
| 1  | 1  |    |    | 0  | 0  | 1  | 1  | 03H  |
| 1  | 1  |    |    | 0  | 1  | 0  | 0  | 04H  |
| 1  | 1  |    |    | 0  | 1  | 0  | 1  | 05H  |
| 1  | 1  | 无关 | 项, | 0  | 1  | 1  | 0  | 06H  |
| 1  | 1  | 填  | 0  | 0  | 1  | 1  | 1  | 07H  |
| 1  | 1  |    |    | 1  | 0  | 0  | 0  | 08H  |
| 1  | 1  |    |    | 1  | 0  | 0  | 1  | 09H  |
| 1  | 1  |    |    | 1  | 0  | 1  | 0  | 0AH  |
| 1  | 1  |    |    | 1  | 0  | 1  | 1  | OBH  |
| 1  | 1  |    |    | 1  | 1  | 0  | 0  | 0CH  |
| 1  | 1  |    |    | 1  | 1  | 0  | 1  | 0DH  |

该指令用来设置显示寄存器的地址。

如果地址设为10H 或更高,数据被忽略,直到有效地址被设定。上电时,地址默认设为00H。

# 7.3 显示控制:

MSB LSB

| В7 | В6 | B5 | B4 | В3 | B2 | В1 | во | 功能     | 说明            |
|----|----|----|----|----|----|----|----|--------|---------------|
| 1  | 0  |    |    |    | 0  | 0  | 0  |        | 设置脉冲宽度为 1/16  |
| 1  | 0  |    |    |    | 0  | 0  | 1  |        | 设置脉冲宽度为 2/16  |
| 1  | 0  |    |    |    | 0  | 1  | 0  |        | 设置脉冲宽度为 4/16  |
| 1  | 0  |    |    |    | 0  | 1  | 1  | "      | 设置脉冲宽度为 10/16 |
| 1  | 0  | 无关 | 项, |    | 1  | 0  | 0  | 消光数量设置 | 设置脉冲宽度为 11/16 |
| 1  | 0  | 填  | 0  |    | 1  | 0  | 1  |        | 设置脉冲宽度为 12/16 |
| 1  | 0  |    |    |    | 1  | 1  | 0  |        | 设置脉冲宽度为 13/16 |
| 1  | 0  |    |    |    | 1  | 1  | 1  |        | 设置脉冲宽度为 14/16 |
| 1  | 0  |    |    | 0  |    |    |    | 日二五子扒黑 | 显示关           |
| 1  | 0  |    |    | 1  |    |    |    | 显示开关设置 | 显示开           |

## 八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

# 8. 1 数据接收(写数据)

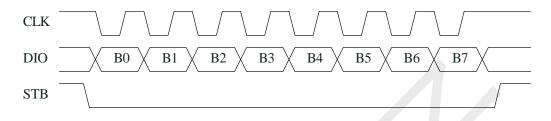



图 (5)

### 8. 2 数据读取:

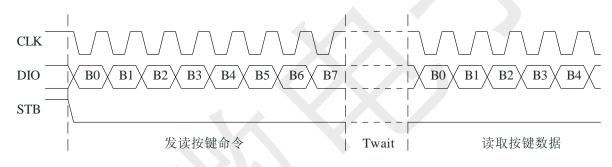



图 (6)

▲注意:读取数据时,从串行时钟CLK 的第8个上升沿开始设置指令到CLK 下降沿读数据之间需要一个等待时间Twait(最小1 $\mu$ S)。

# 九、 显示和按键:

#### 9.1 显示:

1、驱动共阴数码管:

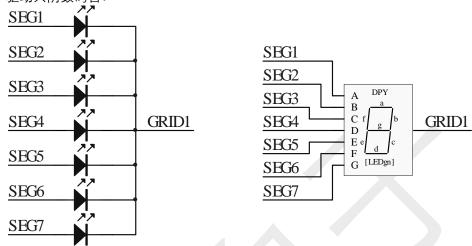



图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1为低电平的时候让SEG1,SEG2,SEG3,SEG4,SEG5,SEG6为高电平,SEG7为低电平,

查看图(2)显示地址表格,只需在00H地址单元里面写数据3FH就可以让数码管显示"0"。

| SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |     |
|------|------|------|------|------|------|------|------|-----|
| 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 00H |
| В7   | В6   | B5   | B4   | В3   | B2   | В1   | ВО   |     |

#### 2、驱动共阳数码管:

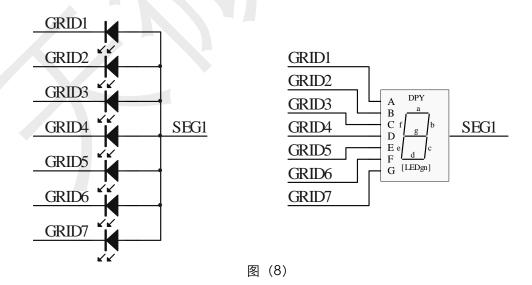
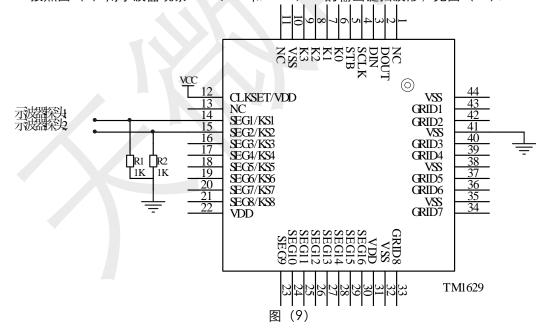



图8给出共阳数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1,GRID2,GRID3,GRID4,GRID5,GRID6为低电平的时候让SEG1为高电平,在GRID7为低电

7

平的时候让SEG1为低电平。要向地址单元00H, 02H, 04H, 06H, 08H, 0AH里面分别写数据 01H, 其余的地址单元全部写数据00H。


| SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |     |
|------|------|------|------|------|------|------|------|-----|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 00H |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 02H |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 04H |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 06H |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 08H |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0AH |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0CH |
| В7   | B6   | B5   | B4   | В3   | B2   | B1   | ВО   |     |

▲注意: SEG1-11为P管开漏输出, GRID1-7为N管开漏输出, 在使用时候, SEG1-11只能接LED的阳极, GRID只能接LED的阴极, 不可反接。

#### 9.2 按键:

键扫描由TM1629自动完成,不受用户控制,用户只需要按照时序读键值。完成一次键扫需要2个显示周期,一个显示周期大概需要T=8x500US,在8MS先后按下了2个不同的按键,2次读到的键值都是先按下的那个按键的键值。

按照图(9)用示波器观察SEG1/KS1和SEG2/KS2的输出键扫波形,见图(10)。



IC在键盘扫描时候SEGN/KSN的波形:

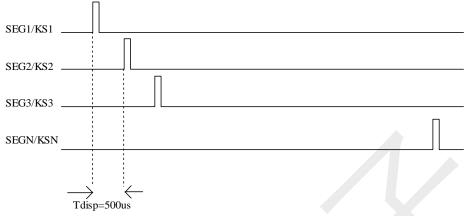
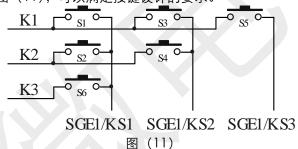
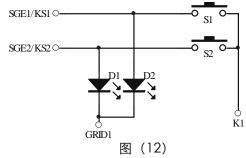



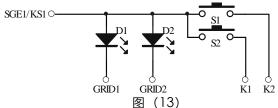

图 (10)

Tdisp和IC工作的振荡频率有关,我司TM1629经过多次完善,振荡频率不完全一致。 500US仅仅提供参考,以实际测量为准。

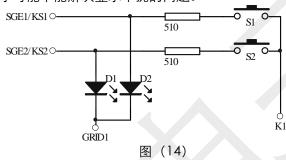

一般情况下使用图(11),可以满足按键设计的要求。



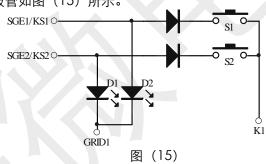
当S1被按下的时候,在第1个字节的B0读到"1"。如果多个按键被按下,将会读到多个"1", 当S2, S3被按下的时候,可以在第1个字节的B1, B3读到"1"。


#### ▲注意: 复合键使用注意事项:

SEG1/KS1-SEG10/KS10是显示和按键扫描复用的。以图(12)为例子,显示需要D1亮, D2灭, 需要让SEG1为 "1", SEG2为 "0" 状态, 如果S1, S2同时被按下, 相当于SEG1, SEG2 被短路,这时D1,D2都被点亮。



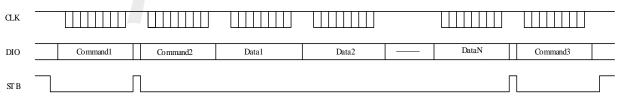

### 解决方案:


1、在硬件上,可以将需要同时按下的键设置在不同的K线上面如图(13)所示,



2、在SEG1—SEG N上面串联电阻如图(14)所示,电阻的阻值应选在510欧姆,太大 会造成按键的失效,太小可能不能解决显示干扰的问题。




3、或者串联二极管如图(15)所示。



### 十、 应用时串行数据的传输:

#### 10. 1 地址自动加一模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命 令字发送完毕, "STB"不需要置高紧跟着传数据,最多16BYTE,数据传送完毕才将"STB"置 高。



Command1: 设置数据命令 Command2: 设置显示地址

Data1~ n: 传输显示数据至Command2地址和后面的地址内(最多16 bytes)

10

Command3: 显示控制命令

### 10. 2 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址,最多16BYTE数据传送完毕,"STB"置高。

| CLK — |          |          |         |          |        |              |   |
|-------|----------|----------|---------|----------|--------|--------------|---|
| DIO   | command1 | command2 | dat a 1 | command3 | dat a2 | <br>command4 |   |
| STB   |          |          |         |          |        | ]            | Γ |

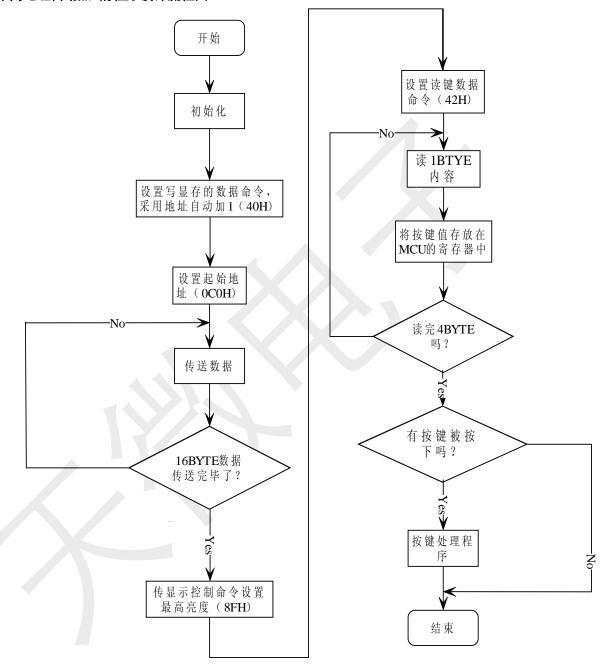
Command1: 设置数据命令 Command2: 设置显示地址1

Data1: 传输显示数据1至Command2地址内

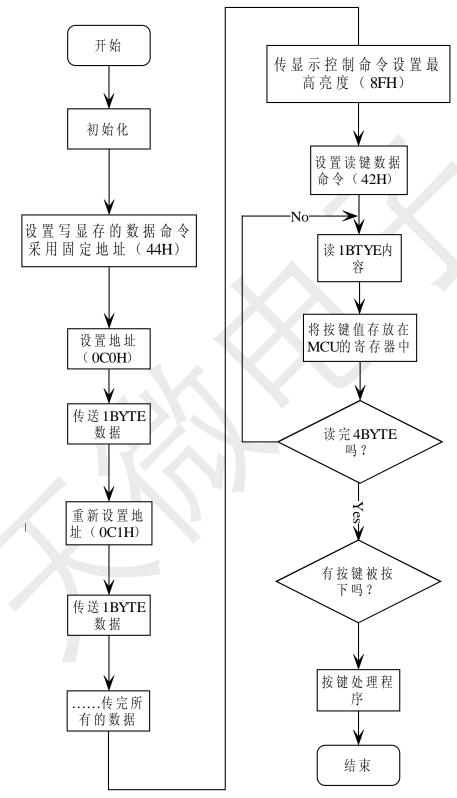
Command3: 设置显示地址2

Data2: 传输显示数据2至Command3地址内

Command4: 显示控制命令


#### 10. 3 读按键时序

| CLK |          | ШШШ   |       |       |       |  |
|-----|----------|-------|-------|-------|-------|--|
| DIO | Command1 | Data1 | Data2 | Data3 | Data4 |  |
| STB |          |       |       |       |       |  |


Command1: 读按键命令 Data1~4: 读取按键数据

### 10. 4 程序设计流程图:

### 采用地址自动加1的程序设计流程图:



# 采用固定地址的程序设计流程图:



# 十一. 应用电路:

# 11. 1 TM1629驱动共阴数码屏接线电路图(18):

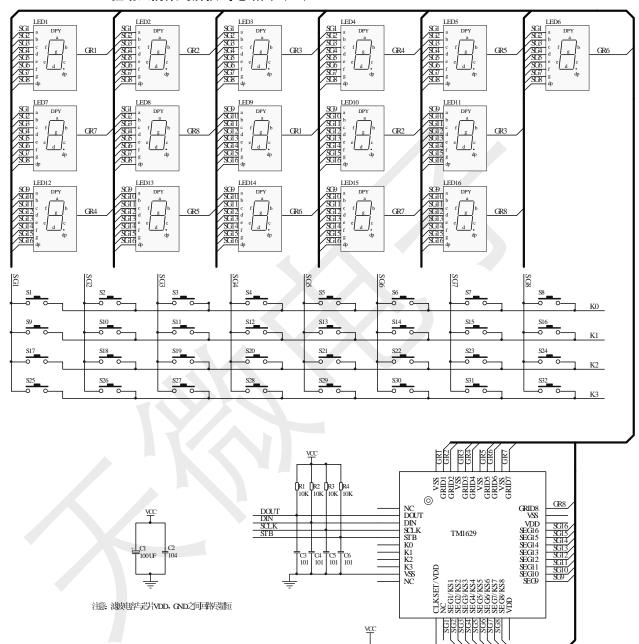
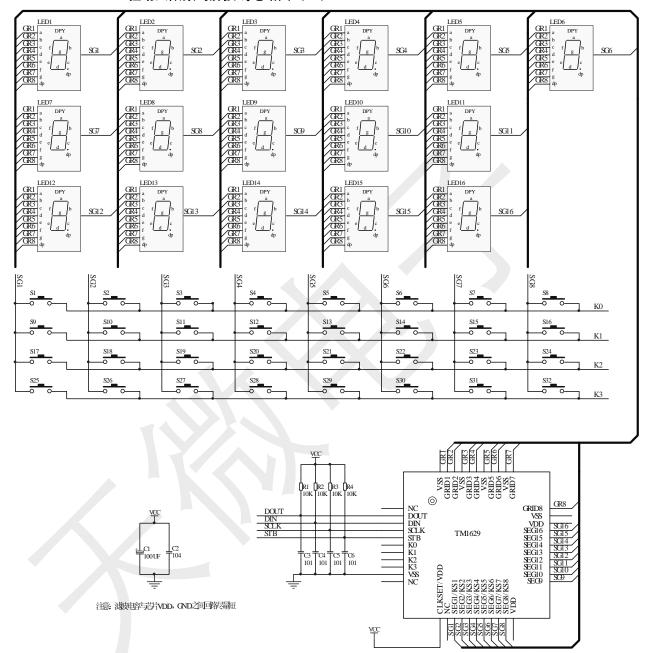




图 (18)

## 11. 2 TM1629驱动共阳数码屏接线电路图 (19):



### 图 (19)

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1629芯片放置,加强滤波效果。

- 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V,因此TM1629供电应选用5V。

# 十二、 电气参数:

# 极限参数 (Ta = 25℃, Vss = 0 V)

| 参数              | 符号   | 范围                 | 单位 |
|-----------------|------|--------------------|----|
| 逻辑电源电压          | VDD  | -0.5 <b>~+</b> 7.0 | V  |
| 逻辑输入电压          | VII  | -0.5 ~ VDD + 0.5   | V  |
| LED Seg 驱动输出电流  | 101  | -50                | mA |
| LED Grid 驱动输出电流 | IO2  | +200               | mA |
| 功率损耗            | PD   | 400                | mW |
| 工作温度            | Topt | -40 ~ +80          | °C |
| 储存温度            | Tstg | -65 ~+150          | °C |

## 正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

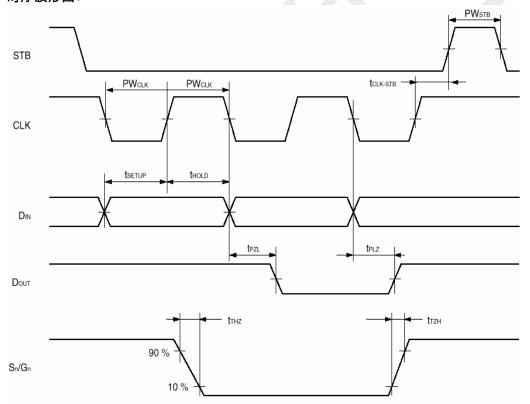
| 参数      | 符号  | 最小      | 典型 | 最大      | 单位       | 测试条件 |
|---------|-----|---------|----|---------|----------|------|
| 逻辑电源电压  | VDD |         | 5  |         | ٧        | -    |
| 高电平输入电压 | VIH | 0.7 VDD | -  | VDD     | <b>\</b> | -    |
| 低电平输入电压 | VIL | 0       | -  | 0.3 VDD | ٧        | -    |

# 电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

| 参数         | 符号     | 最小  | 典型  | 最大  | 单位 | 测试条件                     |
|------------|--------|-----|-----|-----|----|--------------------------|
| 京中亚松山中汶    | loh1   | -20 | -25 | -40 | mA | Seg1~Seg11,<br>Vo=vdd-2V |
| 高电平输出电流    | loh2   | -20 | -30 | -50 | mA | Seg1~Seg11,<br>Vo=vdd-3V |
| 低电平输出电流    | IOL1   | 80  | 140 | -   | mA | Grid1~Grid6<br>Vo=0.3V   |
| 低电平输出电流    | Idout  | 4   | -   | -   | mA | VO = 0.4V, dout          |
| 高电平输出电流容许量 | Itolsg | -   | -   | 5   | %  | VO = VDD - 3V,           |

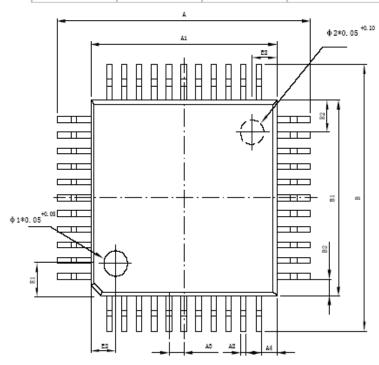


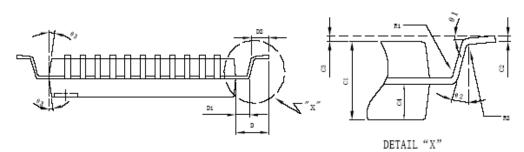
|         |        |            |      |            |    | Seg1~Seg11     |
|---------|--------|------------|------|------------|----|----------------|
| 输出下拉电阻  | RL     |            | 10   |            | ΚΩ | K1~K3          |
| 输入电流    | II     | -          | -    | ±1         | μΑ | VI = VDD / VSS |
| 高电平输入电压 | VIH    | 0.7<br>VDD | -    |            | ٧  | CLK, DIN, STB  |
| 低电平输入电压 | VIL    | -          | -    | 0.3<br>VDD | ٧  | CLK, DIN, STB  |
| 滞后电压    | VH     | -          | 0.35 | -          | ٧  | CLK, DIN, STB  |
| 动态电流损耗  | IDDdyn | -          | -    | 5          | mA | 无负载,显示关        |


# 开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

| <u> </u> |           |    |     |     |     |                   |                                            |
|----------|-----------|----|-----|-----|-----|-------------------|--------------------------------------------|
| 参数       | 符号        | 最小 | 典型  | 最大  | 单位  |                   | 测试条件                                       |
| 振荡频率     | fosc      | -  | 500 | -   | KHz |                   | R = 16.5 KΩ                                |
|          | tPLZ      | ı  | -   | 300 | ns  | O                 | CLK → DOUT                                 |
| 传输延迟时间   | †PZL      | -  | -   | 100 | ns  | CL=               | 15pF, RL = 10K Ω                           |
|          | TTZH 1    | -  |     | 2   | μs  |                   | Seg1~Seg11                                 |
| 上升时间     | TTZH<br>2 | -  | -   | 0.5 | μs  | CL =<br>300p<br>F | Grid1~Grid4<br>Seg12/Grid7~<br>Seg14/Grid5 |
| 下降时间     | TTHZ      | -  | -   | 120 | μs  | CL = 30           | 0pF, Segn, Gridn                           |
| 最大时钟频率   | Fmax      | 1  | -   | -   | MHz |                   | 占空比50%                                     |
| 输入电容     | Cl        | -  | -   | 15  | рF  |                   | -                                          |

# 时序特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)


| 参数          | 符号          | 最小  | 典型 | 最大 | 单位 | 测试条件         |
|-------------|-------------|-----|----|----|----|--------------|
| 时钟脉冲宽度      | PWCLK       | 400 | -  | -  | ns | -            |
| 选通脉冲宽度      | PWSTB       | 1   | -  | -  | μs | -            |
| 数据建立时间      | tSETUP      | 100 | -  | -  | ns | -            |
| 数据保持时间      | tHOLD       | 100 | -  | -  | ns | 1            |
| CLK →STB 时间 | †CLK<br>STB | 1   | -  | -  | μs | CLK ↑ →STB ↑ |
| 等待时间        | tWAIT       | 1   | -  | -  | μs | CLK↑→CLK↓    |


## 时序波形图:



# 封装尺寸

| 尺寸<br>标注 | 最 小(===) | 最大(1000) | 尺寸<br>标注 | 最小(皿) | 最 大(===) |
|----------|----------|----------|----------|-------|----------|
| A        | 13. 20   | 14.00    | D        | 1.8   | TYP      |
| A (短脚)   | 12, 90   | 13, 50   | D(短脚)    | 1.6   | TYP      |
| A1       | 9. 90    | 10.10    | D1       | 0.80  | O TYP    |
| A2       | 0.30     | 0.375    | D2       | 0,60  | 1.00     |
| A3       | 0.67     | 0.93     | E1       | 1.34  | 1.42     |
| A4       | 0.8      | STYP     | E2       | 1.37  | 1.45     |
| В        | 13. 20   | 14.00    | R1       | 0. 1  | SMIN     |
| B (短脚)   | 12, 90   | 13.50    | R2       | 0.13  | 0.3      |
| B1       | 9. 90    | 10.10    | ф1       | 1. 3  | TYP      |
| B2       | 0.8      | STYP     | ф2       | 1. 5  | STYP     |
| C1       | 1.90     | 2.10     | 0 1      | 4°    | TYP      |
| C2       | 0.11     | 0.23     | 0.2      | 20°   | TYP      |
| C3       | 0.05     | 0. 20    | 03       | 8°    | TYP      |
| C4       | 0.904    | 0.944    |          |       |          |
| C4       | 0. 904   | 0.944    |          |       |          |





• All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

# 修订历史

| 版本   | 发行日期       | 修订简介 |
|------|------------|------|
| V1.0 | 2010-02-29 | 试用版  |
| V1.1 | 2012-07-13 | 修订版  |
|      |            |      |