

版本变更记录

版本号	日期	描述
V1.0	2015年11月11日	EG7335 用户手册更新
V1.1	2016年03月02日	典型应用增加 R2 电阻
V1.2	2016年04月13日	无 ESOP8 封装和部分变动

目录

1.	特点		4
2.	描述		4
3.	应用领域	₹	4
4.	引脚		4
	4.1	引脚定义	4
	4.2	SOP8 引脚描述	5
	4.3	SOP8 引脚描述	5
5.	结构框图]	6
6.]电路	
7.	电气特性	Ė	7
	7.1	极限参数	7
		典型参数	
8.	工作模式	<u></u>	8
9.		:事项	
10.		長尺寸	
	10.1	SOP8 封装尺寸	9

EG7335 芯片用户手册 V1.2

1.特点

- 输出驱动能力: 恒流 0.1~1.4A
- OPT1 和 OPT2 组成 4 种不同的工作模式
- 工作电压 2.5V~5.5V
- 芯片内部集成 NMOS 功率管
- 外围电路简单
- 输出电流精度 5% (3.4V~4.4V)
- 输出电流可调

- 具有全亮、半亮、弱光、爆闪和 SOS 功能
- 可驱动大功率 LED 灯具
- 软启动功能
- 过温保护
- 欠压保护
- LED 短路保护
- 封装型式: SOP8L

2. 描述

EG7335 是一款工作于 2.5V 到 5.5V 的多功能恒流 LED 手电筒专用芯片,恒定电流输出,并且电流可以调整,可以用来驱动包括白光发光二极管在内的各类发光二极管。两个引脚 OPT1 和 OPT2 提供 4 种不同的工作模式进行选择,芯片内部集成有功率晶体管,手电筒功能上外围非常简单。芯片内部还集成有状态寄存器和振荡器电路,在手电筒按键的控制下,EG7335 可以控制 LED 在全亮、半亮、弱光、爆闪和 SOS 等状态之间依次循环,非常适合手电筒的应用。EG7335 电流内部固定约 1A; EG7335B 小于 1.4A,并且电流外部可调;需要更大电流的采用 2 颗 EG7335 并联。

3.应用领域

■ LED 手电筒、台灯和矿灯

■ 手电筒移动电源

4.引脚

4.1 引脚定义

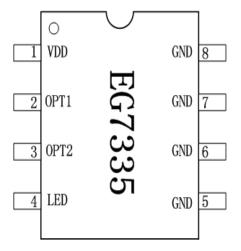


图 4-1. EG7335 SOP8 管脚定义

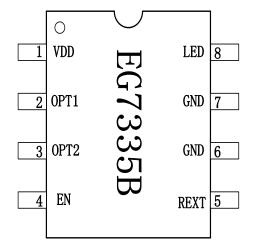


图 4-2. EG7335B SOP8 管脚定义

4.2 SOP8 引脚描述

引脚序号	引脚名称	1/0	描述
1	VDD	0	电源
2	OPT1	1	模式选择1
3	OPT2	1	模式选择 2
4	LED	0	外接 LED 负端
5	GND	0	地
6	GND	0	地
7	GND	0	地
8	GND	0	地

注: OPTI 和 OPT2 需要接电源或者接地。

4.3 SOP8 引脚描述

引脚序号	引脚名称	1/0	描述
1	VDD	0	电源
2	OPT1	1	模式选择1
3	OPT2	1	模式选择 2
4	EN	1	使能端,低电平正常工作
5	REXT	1	外接电阻
6	GND	0	地
7	GND	0	地
8	LED	0	外接 LED 负端

注: OPTI 和 OPT2 需要接电源或者接地, EN 需要外接电源或者地。

5. 结构框图

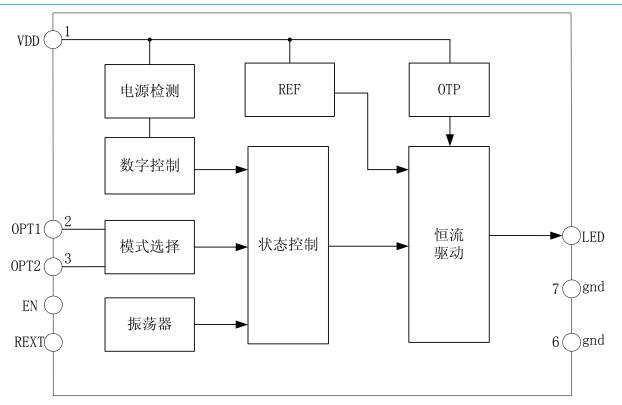


图 5-1. EG7335 结构框图

6. 典型应用电路

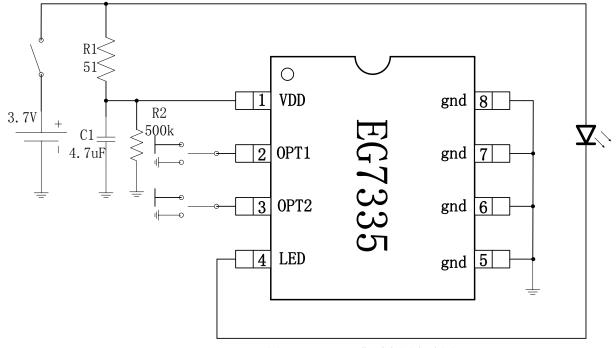


图 6-1. EG7335 典型应用电路图

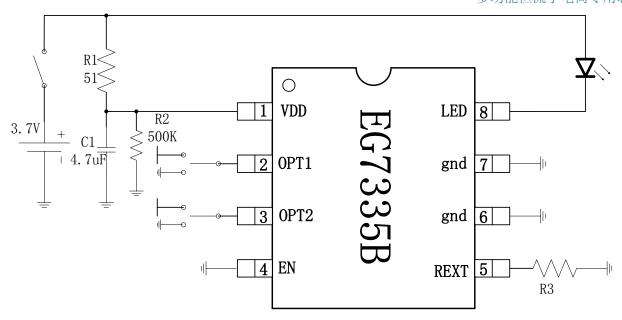


图 6-2. EG7335B 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
VDD	电源电压	-	-0.3	5.7	V
V_{LED}	输出端耐压	E0.3 5.5		V	
TJ	TJ 结温		-	150	$^{\circ}$
TA 工作温度范围		-	-40	85	$^{\circ}$
Tstr	储存温度	-	-65	150	${\mathbb C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在TA=25℃, VDD=3.7V,接LED 灯珠条件下

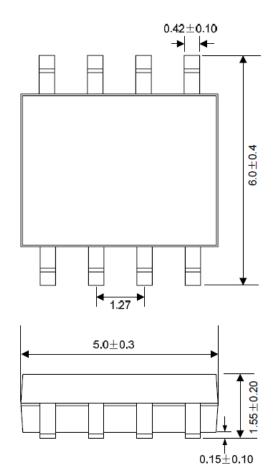
符号	参数名称	测试条件	最小	典型	最大	单位
VDD	电源电压	接 LED 灯珠	2.5	3.7	5.5	٧
ls	关闭电流	EN=VDD			<1	uA

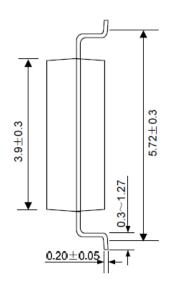
Iq	静态电流	第一档		470		uA
ΔILED/ILED	输出电流精度	VDD(3.4V-4.4V)		5		%
ILED	EG7335 输出电流	EG7335 输出电流 串 LED 灯珠		1000		mA
	EG7335B 输出电流	串 LED 灯珠,REXT=49K		700		mA
		串 LED 灯珠,REXT=43K		800		mA
ILED		串 LED 灯珠,REXT=38K		900		mA
		串 LED 灯珠,REXT=24K			1400	mA
V_{DO}	输出压差			100		mV
ОТР	过温保护			120		$^{\circ}$
UVP 欠压保护		不接 LED 灯珠		2.5		V

8.工作模式

在 TA=25℃, 3V<VDD<5.5V 条件下

Х	OPT1	OPT2	一档	二档	三档	四档	五档
1	0	0	100%亮	50%亮	25%亮	快闪(6.8HZ)	SOS
2	1	0	100%亮	50%亮	25%亮	快闪(6.8HZ)	
3	0	1	100%亮	25%亮	快闪(6.8HZ)		
4	1	1	100%亮	50%亮	快闪(6.8HZ)		


典型应用处 R2 的不同取值,可以调节恢复回一档的时间,即档位切换的时候,间隔长点,就会回到一档的状态。


9.PCB 注意事项

PCB设计最重要的一个是良好的散热性能,散热的好差对EG7335芯片和LED电流有很大影响。该芯片的热量通过封装引线框管脚散到外面,PCB上的铜层起着散热片的作用,尤其是LED管脚和GND管脚的铜层面积应尽可能大,多放些通孔也能提高热处理能力。LED手电筒都是采用铝合金的外壳,所以这个芯片PCB板的地线要和手电筒的外壳充分接触,这样能够做到最大的散热效果。保证芯片正常工作,并且能够最大电流的输出。否则,芯片的热量增大时,会引起热保护,使得LED电流减小,或者不正常工作。

10. 封装尺寸

10.1 SOP8 封装尺寸

